Lp-PLA₂ (The PLAC[®] Test)

CPT Code 83698 Sample Type EDTA Plasma or Serum Order Code C167 Tube Type Lavender Top or Tiger Top

Increased levels of Lp-PLA₂ may lead to increased risk of:

- Coronary heart disease
- Stroke
- Myocardial infarction

Lp-PLA₂ levels can be reduced by:

- Treatment with statins
- Supplementation with niacin
- Lifestyle modifications

Description

Lp-PLA₂, or lipoprotein-associated phospholipase-A₂, measures disease activity within the artery wall below the collagen or calcified cap due to the activation of macrophages. Lp-PLA₂ is not an acute phase reactant. When disease is active in the artery, increased levels of Lp-PLA₂ are produced by macrophages and foam cells within the intima of the artery¹. Lp-PLA₂ also interacts with oxidized LDL, which increases inflammation and enhances a proatherogenic state, as well as plaque vulnerability². Research suggests that it plays a direct role in the atherosclerotic disease process³.

Clinical Use

The Lp-PLA₂ test may be performed on individuals at intermediate or high risk for developing coronary heart disease who are any age with at least two major risk factors, those \geq 65 years of age with one major risk factor, smokers, those with a fasting blood glucose of \geq 100 mg/dL, or those who have metabolic syndrome.

Clinical Significance

- Lp-PLA₂ accumulates within human atherosclerotic plaques and vulnerable lesions⁴.
- Elevated Lp-PLA₂ levels can predict the development of coronary artery disease in apparently healthy individuals^{5,6} and the risk of future adverse cardiac and cerebrovascular events⁷.
- Individuals with normal systolic blood pressure, but high Lp-PLA₂ levels, are 2x as likely to have a stroke⁷, while those with elevated systolic blood pressure and Lp-PLA₂ levels are 7x more likely to experience a stroke⁸.
- Post-menopausal women not using hormone therapy who have an elevated Lp-PLA₂ have a 64% increased risk of ischemic stroke⁹.

Testing Frequency

The frequency of testing is determined by an individual's medical history, but may be performed alongside a standard lipid panel in patients at moderate to high risk for CHD or ischemic stroke. These patients may have two or more risk factors such as a family history of CVD or hypertension.

Sample Type

The Lp-PLA $_{\!\!2}$ test should be performed on a serum or EDTA plasma sample.

Commercial Insurance or Medicare Coverage

Coverage guidelines, also known as NCD (National Coverage Determination) or LCD (Local Coverage Determination) have been established or posted by CMS (Medicare & Medicaid). Guidelines should be reviewed for coverage and limitations. Limited information has been provided by the majority of the larger carriers (Aetna, United HealthCare, Cigna, Blues).

Understanding Medical Necessity

The following ICD-9 codes for Lp-PLA₂ are listed as a convenience for the ordering practitioner. The ordering practitioner should report the diagnosis code that best describes the reason for performing the test and provide the 4th and 5th ICD-9 digit as appropriate.

Diagnosis	Diagnosis Code
Diabetes Mellitus Type II or Unspecified, Not Stated as Uncontrolled	250.00
Diabetes Mellitus Type II or Unspecified, Uncontrolled	250.02
Pure Hypercholesterolemia	272.0
Mixed Hyperlipidemia	272.2
Other and Unspecified Hyperlipidemia	272.4
Benign Essential Hypertension	401.1
Unspecified Essential Hypertension	401.9
Coronary Atherosclerosis of Unspecified Type of Vessel, Native or Graft	414.00
Coronary Atherosclerosis of Native Coronary Artery	414.01
Other Abnormal Blood Chemistry	790.6

ClevelandHeartLab[®]

RELATIVE RISK

Lp-PLA₂ (ng/mL)

≤200 Low

>200 High

Treatment Considerations

These treatment considerations are for educational purposes only. Specific treatment plans should be provided and reviewed by the treating practitioner.

✓ Assess LDL-C levels.

• If not at goal, consider lipid-lowering therapy, ideally with a statin-based regimen if not contraindicated.

✓ Assess omega-3 fatty acid levels.

• Omega-3 fatty acid supplementation, along with statin therapy, may reduce Lp-PLA₂ levels¹⁰.

✓ Assess HDL-C levels.

- If not at goal, consider niacin or fenofibrate therapy.
- Assess CoQ10 levels as recent evidence suggests that low ApoA1 and/or HDL-C levels are associated with low CoQ10 levels¹¹.
- ✓ Assess the presence of CAD with imaging techniques such as CIMT or coronary artery calcium scoring.
- Consider aspirin therapy if not contraindicated.
- Consider clopidogrel if history of CAD (i.e., myocardial infarction or revascularization) and/or a history of cerebrovascular disease (i.e., TIA or stroke).

✓ Assess dental health (periodontal disease).

• Refer to dentist to identify gum disease.

NOTE: Periodontal therapy may reduce Lp-PLA₂ levels¹².

✓ Assess smoking habits.

NOTE: Smoking cessation is essential as individuals who smoke are at increased risk of heart disease and blood clots.

✓ Assess blood pressure.

• If not at goal, consider initiating, or titrating, antihypertensive therapy.

NOTE: An elevated blood pressure may contribute to endothelial damage and coronary disease formation.

✓ Assess lifestyle habits.

• Consider diet/exercise/weight reduction efforts if appropriate.

References

- 1. Ferguson JF et al. Translational studies of lipoprotein-associated phospholipase A(2) in inflammation and atherosclerosis. J Am Coll Cardio. 2012; 59: 764-772.
- 2. Gonçalves I et al. Evidence supporting a key role of Lp-PLA2-generated lysophosphatidylcholine in human atherosclerotic plaque inflammation. Arterioscler Thromb Vasc Biol. 2012; 32: 1505-1512.
- 3. Serviys PW et al. (2008). Effects of the direct lipoprotein-associated phospholipase A2 inhibitor darapladib on human coronary atherosclerotic plaque. Circulation. 2008; 118: 1172-1182.
- Kolodgie FD et al. Lipoprotein-associated phospholipase A₂ protein expression in the natural progression of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2006; 26: 2523-2529.
 Ballantyne CM et al. Lipoprotein-associated phospholipase A₂, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis
- Bisk in Communities (ARIC) study. *Circulation*. 2004; 109: 837-842.
 Daniels LB et al. Lipoprotein-associated phospholipase A₂ is independent predictor of incident coronary heart disease in an apparently healthy older population: The Rancho Bernardo Study. *J Am*
- Coll Cardiol. 2008; 51: 913-919. 7. Ballantyne CM et al. Lipoprotein-associated phospholipase A₂, high sensitivity C-reactive protein, and risk for incident ischemic stroke in middle-aged men and women in the Atherosclerosis Risk in Computities (ABLO) study. *Arch Intern Med*. 2005; 185: 2479-2484
- Communities (ARIC) study. Arch Intern Med. 2005; 165: 2479-2484.
 Gorelick PB. Lipoprotein-associated phospholipase A₂ and risk of stroke. Am J Cardiol. 2008; 101 (suppl): 34F-40F.
- 9. Wassertheil-Smoller S et al. Lipoprotein-associated phospholipase A2, hormone use, and the risk of ischemic stroke in postmenopausal women. Hypertension. 2008; 51: 1115-1122.
- 10. Davidson MH et al. Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: An 8-week, randomized, double-blind, placebocontrolled study. *Clin Ther.* 2007; 39: 1354-1367.
- 11. Toyama K et al. Rosuvastatin combined with regular exercise preserves coenzyme Q10 levels associated with a significant increase in high-density lipoprotein cholesterol in patients with coronary artery disease. Atherosclerosis. 2011; 217: 158-164.
- 12. Lösche W et al. Lipoprotein-associated phospholipase A₂ and plasma lipids in patients with destructive periodontal disease. J Clin Periodontol. 2005; 32: 640-644.

