One of the earliest manifestations of endothelial dysfunction is nitric oxide (NO) deficiency, which promotes atherosclerosis. Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA), its structural isomer, are metabolites of L-arginine, an amino acid that is catalyzed to L-citrulline and NO by nitric oxide synthase (NOS). Both ADMA and SDMA have distinct pathophysiologies and manifestations. ADMA is a competitive inhibitor of NOS thereby reducing NO production and promoting endothelial dysfunction. SDMA also interferes with NO production, but does so indirectly by reducing the cellular availability of arginine. ADMA is primarily cleared through enzymatic degradation in the bloodstream and its presence identifies subclinical cardiovascular disease (CVD). Conversely, SDMA is primarily excreted in the urine and identifies reduced renal function.

Clinical Use
ADMA/SDMA may be measured in individuals with multiple risk factors for the development of CVD.

Clinical Significance
Cardiovascular Significance:
- Higher levels of ADMA are associated with a 1.40x increased risk of CVD and coronary heart disease, as well as a 1.60x increased risk of stroke, in a general population.
- Elevated ADMA levels are associated with the presence of hypertension, insulin resistance, and hyperlipidemia.
- Elevated ADMA levels are associated with subclinical atherosclerosis:
 - Increased ADMA concentrations correlate with internal carotid artery bulb intimal media thickness, a hemodynamically unstable region vulnerable to NO deficiency and plaque formation.
 - Elevated ADMA in young adults is associated with increased coronary artery calcification.
- Individuals with established coronary artery disease and elevated ADMA levels have more than twice the risk for adverse events (myocardial infarction, stroke) than those with normal ADMA levels.

Renal Significance:
- Elevated SDMA levels positively correlate with reduced renal function, as measured by estimated glomerular filtration rate and cystatin C.

Specimen Type
The ADMA/SDMA test should be performed on a serum specimen, and fasting is recommended, but not required.

Testing Frequency
The frequency of testing is determined by an individual's medical history, but may be monitored in individuals with hyperlipidemia, hypertension, pre-diabetes/diabetes, or those who are at moderate to high risk for developing cardiovascular disease.

Commercial Insurance or Medicare Coverage
Coverage guidelines have not been established or posted by CMS (Medicare & Medicaid). We have reviewed the larger carriers (Aetna, United Healthcare, Cigna, Blues) and information is limited or has not been posted.
RELATIVE RISK

<table>
<thead>
<tr>
<th>TEST</th>
<th>SDMA</th>
<th>ADMA (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
<td><100 Low</td>
</tr>
<tr>
<td>Med</td>
<td>High</td>
<td>100-123 Moderate</td>
</tr>
<tr>
<td>Low</td>
<td>High</td>
<td>>123 High</td>
</tr>
</tbody>
</table>

REFERENCE RANGE

<table>
<thead>
<tr>
<th>TEST</th>
<th>SDMA</th>
<th>ADMA (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
<td>73 - 135 Low</td>
</tr>
<tr>
<td>Med</td>
<td>High</td>
<td>>135 High</td>
</tr>
</tbody>
</table>

Treatment Considerations

These treatment considerations are for educational purposes only. Specific treatment plans should be provided and reviewed by the treating practitioner.

- **Assess lifestyle habits.**
 - Consider diet, exercise, and weight reduction efforts, if appropriate.\(^1\)\(^3\)
- **Assess LDL-C levels.**
 - If not at an optimal level,\(^8\) consider lipid-lowering therapies described in the National Cholesterol Education Program/Adult Treatment Panel III (NCEP ATP III) Guidelines.\(^14\)
- **Assess insulin sensitivity.**
 - If not at an optimal level,\(^7\) consider insulin-sensitizing therapies described in the American Diabetes Association guidelines for the management of pre-diabetes/diabetes.\(^15\)
- **Assess blood pressure.**
 - If not at an optimal level, consider initiating, or titrating, antihypertensive therapy.\(^1,16\)
 - Consider L-arginine or L-citrulline supplementation to enhance NO production, and to improve vasodilation and vascular tone.\(^1,17\)

- **Assess the presence of coronary artery disease (CAD) with imaging techniques, such as carotid intima-media thickness (CIMT)\(^3\) testing or coronary artery calcium (CAC)\(^4\) scoring.**

- **Assess clotting risk.**
 - Consider antplatelet therapy if history of CAD (i.e., myocardial infarction or revascularization) and/or cerebrovascular disease (i.e., transient ischemic attack or stroke).\(^1\)

- **Assess renal function.**
 - If SDMA levels are not optimal,\(^5,6,11,12\) consider further assessment and treatment considerations for kidney disease, as outlined in the National Kidney Foundation guidelines.\(^18\)

* The CPT codes provided are based on AMA guidelines and are for informational purposes only. CPT coding is the sole responsibility of the billing party. Please direct any questions regarding coding to the payer being billed.

† The treatment considerations are provided for informational purposes only and are not intended as medical advice. A physician’s test selection and interpretation, diagnosis, and patient management decisions should be based on his/her education, clinical expertise, and assessment of the patient.

References

QuestDiagnostics.com

Quest, Quest Diagnostics, any associated logos, and all associated Quest Diagnostics registered or unregistered trademarks, including Cleveland HeartLab, are the property of Quest Diagnostics. All third-party marks—® and ™—are the property of their respective owners. © 2018 Quest Diagnostics Incorporated. All rights reserved. CHL-D070 08/2018