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Objectives

 Review mitochondrial structure, energy production and
metabolism

* Discuss the pathophysiology of oxidative stress and
mitochondrial damage; including dietary factors, ROS, and
toxins

 Review ways to support mitochondria with diet, nutrients,
and phytochemicals






Mitochondrial distribution

* Approximately 10 million billion total:  ~10% of body weight
« Average of 200 to 2000 per somatic cell

~5000 in cardiac cells -- 50% of myocardial cytoplasm -- there is complete turnover of
myocardial ATP pool every 10 seconds

~800 In hepatocytes
~300-400 in neurons (filamentous)
 Mitochondria generate and consume the body’s weight in
ATP every day






Mitochondria: powerhouse of the cell

Mitochondria consume about 90% of the oxygen used by the body for
oxidative phosphorylation

The oxygen serves as the ultimate electron receptor from the electron
transport chain, allowing ATP to be generated



Mitochondrial anatomy
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Healthy cristae (left) vs damaged (right)



Mitochondrial functions

ATP synthesis

Buffering Ca** flux (from endoplasmic reticulum & plasma membrane)
Maintenance of ion gradients (polarized cells)

Generation of reactive oxygen species (ROS)

Regulation of cell growth, cell cycle, metabolism



Mitochondrial bioenergetics

e Catabolism of CHO, fats, & amino acids into carbon skeletons

« Extraction of energy released via catabolism:
— Glycolysis
— Citric acid cycle (Krebs)
— [B-oxidation
— Oxidative phosphorylation
« 36-38 molecules of ATP per molecule of glucose
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Glycolysis

* Ancient metabolic pathway -- in cytosol of most living organisms

* Glucose (6C): initial electron donor
— Reduces NAD* into NADH x 2

— Generates ATP x 2
(very rapid but inefficient energy production)

— Splits into pyruvate x 2

* Pyruvate (3C)
— Actively transported into matrix for aerobic respiration by mitochondrial pyruvate carrier

— When mitochondrial metabolism inhibited (anaerobic conditions, etc.), converted into
lactate by LDH, which regenerates NAD*
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Conventional wisdom has been that
mitochondria prefer carbohydrates
(glucose) as the primary source of energy,
however, fatty acids (ketones), and amino
acids can also be readily utilized by
mitochondria



Tricarboxylic Acid (Krebs) Cycle

Final common catabolic pathway for all nutrients (protein, fat,
carbohydrates)

Enzymes located in mt matrix (except for complex Il - succinate
dehydrogenase)

Acetyl-CoA oxidized to CO,,
Produces

— Metabolic byproducts: amino acid precursors
- NADH, FADH,, GTP



Long chain fatty acids: mitochondrial metabolism

* Most dietary fatty acids undergo [3-oxidation in mitochondria

* High carbohydrate intake impairs [3-oxidation, resulting in accumulation
of intracellular lipid intermediates and triglycerides, causing insulin
resistance

* Fasting, starvation, and low carbohydrate/high fat diets increase
hepatic 3-oxidation, resulting in ketogenesis



Ketone bodies

« Ketones soluble in water—no protein carriers required

« Plasma levels increase with fasting, high fat/low CHO diets, and
uncontrolled diabetes

« Ketones are preferred fuel (vs glucose) for cardiac muscle and
renal cortex

« Used in brain (after crossing blood brain barrier) proportionate to
concentration in blood, provide energy when glucose availability is
limited

J Med Food 16 (11) 2013, 965-967



Amino acids as fuel sources

e Can be oxidized, degraded into pyruvate, used as citric acid cycle
Intermediates, or converted into ketone bodies

« Oxidative degradation of AAs produces 10-15% of total metabolic
energy

* Act as precursors for gluconeogenesis when glucose supply is
low
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Mitochondrial energy production
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Objectives

Review mitochondrial structure, function and metabolism

Discuss the pathophysiology of mitochondrial damage,
Including dietary factors, ROS, and toxins

Review ways to support mitochondria with diet, nutrients, and
phytochemicals



An individual produces about
1 kg of oxygen radicals per year. The
consequence is about 100,000 oxidative
attacks on mDNA per cell per day.



Causes of iIncreased mitochondrial ROS

Caloric excess

Hyperglycemia (endothelial)
nflammatory mediators (TNFa)
Hypoxia

Environmental pollutants & toxicants
Toxic metals (mercury, arsenic)
lonizing radiation




Denham Harman

* First proposed the idea of “free radicals” in 1956 and postulated
that these compounds play a role in aging through cross-linking
reactions.

* Free radicals covalently modify lipids, proteins, cellular and
mitochondrial DNA.

Harman D. Role of free radicals and radiation chemistry. J Gerontol 1956;11:298-300.
Harman D. Free radical theory of aging: consequences of mitochondrial aging. Age 1983;6:86-94.



Free radical theory of aging

* Increased oxidant generation
* Declining defenses and repair

« Accumulation of the end products of oxidative damage
v Advanced Glycosylated End Products (AGES)
v Protein Oxidation (NitroTyrosine)
v Oxidized LDL, Isoprostane F2, Lipid Peroxides, MDA
v DNA damage (8-OH dG)



Free radicals, ROS, and RNS...

React with and damage structural and functional components of

cells

» Membranes & Receptors
Enzymes & other proteins
Cellular DNA & RNA
Mitochondrial DNA & Membranes

YV V V



Mitochondria & free radicals

* About 1-2% of oxygen consumed by our mitochondria is
converted to superoxide and hydrogen peroxide

* One rat liver mitochondrion produces ~3X107 superoxide radicals
per day

 Each liver cell contains ~1000 mitochondria



NK-kB mediated cellular damage

1 Oxidative Stress

!

Activation of NF-KB

Up-regulation of stress and inflammation
genes including inducible NOS (iNOS)

|

1 RNS, NO, *ONO2—

|

Increased Cellular Damage



How does the body protect itself from ROS?

1. Enzymes
Catalase (Fe)
Superoxide dismutase-SOD (Zn, Cu, Mn)
Glutathione peroxidase (Se) and glutathione reductase

2. Dietary Anti-Oxidants
Vitamin C for agueous compartments
Vitamin E for lipid compartments
Carotenoids, flavonoids, etc.

3. Endogenous Anti-Oxidant Molecules
Glutathione, cysteine, CoQ,,, lipoic acid, uric acid, cholesterol.



Understanding oxidative stress

To have a comprehensive understanding of the body’s red-ox

potential and level of total oxidative stress, you need to know:
1. What is the antioxidant reserve or total antioxidant capacity?
2.  What is the throughput of reactive oxygen species and free radicals?
3.  What damage to cellular components is being done?



Mitochondrial function

4

Generation of ROS

4

Oxidative damage

mtDNA mutations




What’s the damage?

Oxidative stress from free radicals, ROS, and RNS can damage
many cellular components

» Damaged Fats

» Damaged Sugars

» Damaged Proteins

» Damaged DNA



One can evaluate with:

Damagec
Damagec
Damagec

Damageo

Fats = Lipid Peroxides, oxidized LDL, Isoprostane F2
Sugars = HgbAlc, AGEs

Proteins - 3-Nitrotyrosine

DNA - 8-OH Deoxyguanosine



Therapies to W lipid peroxides

Consider fat-soluble antioxidants:
» Vitamin E (interrupts rapid propagation of lipid peroxides)
> CoQ10
» Lipoic Acid
For lowering serum lipid peroxides, the combination of Curcumin,
cayenne, and garlic is effective

Kempaiah RK, Srinivasan K. Ann Nutr Metab 2004;48:314-320.



Damaged DNA (8-OHdG)
8-nydroxy-deoxyguanosine

* When an activated oxygen species reacts with the nucleotide
guanosine, 8-hydroxy-deoxyguanosine is created

« 8-OHdG is the most frequent mutagenic lesion in our DNA

« Damage can be triggered by chemical toxicity, inflammation, or
radiation



8-OHdG as a marker of oxidative stress

8-hydroxy-2'-deoxyguanosine
(8-OHdG): A Critical Biomarker
of Oxidative Stress

and Carcinogenesis




Therapies to treat damaged DNA

« Carotene supplementation has been found to decrease DNA
oxidation

* Reduce iron overload, if present
« Combination antioxidant support is most effective
« Methylation is critical for DNA synthesis

Griffiths HR. Mol Aspects Med. 2002;23:101-108.
Wu LL et al. Clin Chim Acta. 200;339:1-9.



Effective treatment

Nutritional Anti-Oxidants (Vit A, C, E)

 Glutathione, alpha-Lipoic Acid
« CoEnzyme Q-10 (CoQ-10)

Plant-based Anti-Oxidants

« Resveratrol
« EpiGalloCatechinGallate (EGCG)
« Many, many, many others

Proper Methylation Function (B-Vitamins)
Mineral Co-Factors (Mg, Mn, Fe, Zn)
Amino Acid Balance and Protein Digestion
Eat Your Vegetables!
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Mitochondrial dysfunction & disease

Metabolic syndrome: insulin resistance, type 2 diabetes, obesity, non-
alcoholic fatty liver disease

Cardiovascular disease (congestive heart failure)
Cancer

Neurodegenerative & neuromuscular disorders
Mood disorders; bipolar disorder

Chronic fatigue; fiboromyalgia

Multiple chemical sensitivity

Premature aging



Common mediators of neurodegeneration

Reactive species and oxidative/nitrative damage — which
offending species?

Mitochondrial dysfunction
Abnormal protein aggregates

Inflammation



Common types of neurodegeneration

Alzheimer’s Disease
— (a.k.a. Senile Dementia of the Alzheimer’s Type — SDAT)

Cognitive Impairment
Memory Loss
Parkinson’s Disease
Stroke/ CVA



Damage to lipids, proteins, DNA, & RNA
In mild cognitive impairment

“These studies establish oxidative damage as an early event in
the pathogenesis of Alzheimer disease that can serve as a
therapeutic target to slow the progression or perhaps the onset of
the disease.”

Markesbery, W., Arch Neurol. 64(7):954-956; July, 2007



Oxidative stress response

e.g. Neurotrophic factors,
Neurogenesis, DNA repair etc

Adaptation Responses

/ -
ROS/RNS l Failure to adapt
\ Apoptosis Necrosis

Oxidation of proteins, <
lipids and DNA /
/
|

Organelle dysfunction e -~ 1cium dysregulation



Metabolic regulation of cognitive dysfunction

* Diabetes aggravates, and energetic challenges attenuate, CNS
iInflammation.

e EXxercise and caloric restriction ameliorate, and diabetes
exacerbates, Alzheimer’s disease models.

« Cognitive impairment associated with trauma or ischemia can be
modified by caloric intake and exercise.



Regulation of cognitive function
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Is oxidative stress a useful target for brain disorders?

Dual roles of ROS:
Signaling vs damage - Xenohormesis

— Are ROS merely associated with the disease process or play a causative
role?

— Do antioxidant compounds interfere with physiological processes?
— Does redox signaling role interfere with antioxidant efficacy?

Goal of antioxidant therapy in disease states
IS to normalize elevated ROS levels
and decrease oxidative damage



Xenohormesis

All substances are poisons; there Iis none that is not a poison. The
right dose differentiates a poison and remedy.

Paracelsus (1493-1541)



“What doesn’t kill you, makes you stronger!”

Figure 2. Differential responses to rising oxidative stress.
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Nutrients 2014, Vol 6: 3777-3801



Xenohormesis

Surh YJ. Ann NY Acad Sci. 2011;1229:1-6.
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Figure 1. Activation of Nrf2-Keap1 signaling by xenohormetic phytochemicals with cancer chemopreventive potential.
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Ketogenic diet

Reduces inflammation (NFkB)
Enhances mitochondrial biogenesis
Enhances ATP production

Reduces ROS production

Reduces apoptosis

Increases insulin sensitivity
Increases leptin sensitivity
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The ketogenic diet (KD)

Mimics fasting state — switches metabolism of glucose to metabolism
of ketones

Clinically-used treatment for intractable seizures in children and
adolescents

High fat — low carbohydrate (4:1, fat:non-fat)
Efficacy appears to be independent of seizure type

Mechanism of action unknown but attributed to ketone bodies,
glycolysis, and mitochondrial metabolism

Research direction: clinic to bench



Activation of the Nrf-2 adaptive
response in the ketogenic diet

Ketogenic Diet

Mild oxidative/electrophilic stress (H,0,, 4-HNE)

l’ Protein kinase cascade

&

Nucleus

Nrf2

Target gene transcription
(Gclc, Gelm, Nqo1, Ho-1)
e

Milder and Patel, Epilepsy Res. 2011



The perfect storm
(insulin resistance)

Glucose unable to enter cell

B oxidation is inhibited leading to lipid accumulation in skeletal muscle,
liver, & heart

Gluconeogenesis is inhibited
Krebs cycle intermediates are depleted
Only one option remains: break down muscle and replace it with fat

All these conditions are intracellular energy deficits (obesity, CHF,
cachexia, diabetes, fatty liver)



Nrf2, the Oxidant ‘Thermostat’ of the
Cell: The ‘Oxidant-stat’

Feleased to

travel to nuclens

Antioxidant Response
Elements

ARE: GSH, GST’s, GPx,
Catalase and others

GSH




Nrf2 activation

Oxidative stress / \ °Catalase

Caloric restriction * Glutathione
Curcumin e SOD

Green tea extract * GST (Phase Il detox)
Pterostilbene * Inhibits NF-kB
Sulforaphane * Inhibits microglial
Garlic (allicin) activation

DHA



Antioxidants

Anti-stress

Anti-inflammatory
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Fig. 1. Outline of the Nrf2 regulatory system.

Pall ML, Levine S. Nrf2, Master Cytoprotection & Detoxification Regulator, is Raised by Many Health Promoting Factors . . . Acta Physiologica Sinica. 2015 67(1):1-18.




Objectives

 Review mitochondrial structure, function and metabolism

 Discuss the pathophysiology of mitochondrial damage, including
dietary factors, ROS, and toxins

 Review ways to support mitochondria with diet, nutrients,
phytochemicals, and lifestyle



Pharmacological Exercise Calorie
Intervention Restriction

Insulin Sensitivity 1+

Normal Metabolism
Normal Cardiovascular Function

Kim J et al. Circulation Research 2008;102:401-414




Exercise increases mitochondrial numbers

Moderate intensity exercise 4 months:
* 67% Iincrease in mitochondrial density
» 55% increase in cardiolipin content
 Increase in mitochondrial oxidation enzymes
 All linked to improvement in hemoglobin Alc and fasting plasma glucose

Toledo, GS, et al. Diabetes 2007; 56:2142-2147



Phytochemicals that support mitochondrial function

Curcumin (turmeric)
Sulforaphane (broccoli)
Berberine

Quercetin

Resveratrol (red wine)
Pterostilbene (purple berries)
Green tea polyphenols



Nutrients that support mitochondrial function

Acetyl-L-carnitine: 1500-3000 mg

Alpha lipoic acid: 300-900 mg

* Coenzyme Q10 (ubiquinone): 50-200 mg
« Magnesium: 100-500 mg

Neurobiol Aging. 2013, pii: S0197-4580(13)00525-3
Mech Ageing Dev. 2010 Jul-Aug;131(7-8):473-9



Nutrients that support mitochondrial function

N-acetylcysteine: 500-3000 mg

Creatine: 5-15 grams

* Melatonin: 3-20 mg

Ketogenic & branched chain amino acids
Nicotinamide riboside: 250-1000 mg

Aging, 2011, Vol 3(5): 464-478
Neurobiol Aging. 2013, pii: S0197-4580(13)00525-3
Mech Ageing Dev. 2010 Jul-Aug;131(7-8):473-9



Benefits of enhanced mitochondrial function

| ROS / Oxidative Stress

T Metabolic Function

T Energy Level

1 Exercise Performance

| Body Fat / 1Lean Muscle Mass
| Age-Related Deterioration

T Increased Lifespan (?)

Cancer suppression






Treatment: a TO DO list to support mitochondrial function

d Get adequate nutrition

dStay cool and hydrate

dPrevent infections

d Exercise (physical & mental)

J Avoid toxins

dIntermittent fasting

d Avoid simple and processed carbs



Treatment: a TO DO list to support mitochondrial function

Supplements:
d CoQ-10
d Omega-3 Fatty Acids
O B-Vitamins (particularly B2 & B3)
4 Alpha-Lipoic Acid
O Nrf2 Activators
 Rhodiola
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